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Abstract

The article reports a methodology to synthesize the response of plane strain orthotropic and transversely
isotropic half!spaces and full!spaces with arbitrarily oriented symmetry axes and subjected to concentrated
and to distributed loads[ Numerical results include the response of a half!space and a full!space to a uniform
strip load[ The examples presented analyze the in~uence of coordinate axis rotation and of the continuum
anisotropy ratios[ Stationary dynamic behavior is assumed throughout the article[ Þ 0888 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

In many engineering phenomena\ including the response of soils\ geological materials and
composites\ the assumption of an isotropic behavior may not capture some signi_cant features of
the continuum response[ The formulation and solution of anisotropic problems is far more di.cult
and cumbersome that its isotropic counterpart[ In the last years the elastodynamic response of
anisotropic continuum has received the attention of several researchers[ In particular transversely
isotropic and orthotropic materials\ which may not be distinguished from each other in plane
strain and plane stress cases\ have been more regularly studied[

A review of the literature on wave propagation in anisotropic continua shows that Carrier
"0835# analyzed waves in transversely isotropic media subjected to a restriction in the constitutive
equations which would allow the classical Helmholtz decomposition of a vector _eld to be applied[
Later Stoneley "0838#\ Synge "0845# and Buchwald "0850# extended the analysis to handle more
general anisotropic material behavior[ The synthesis of dynamic Green|s functions for anisotropic
media has only been accomplished more recently[ In 0864 Payton presented a time domain solution
for displacements and stresses in a transversely isotropic full!space\ subjected to Carrier|s restriction
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and loaded by an instantaneously applied point force[ In his book\ published in 0872\ the same
solution without Carrier|s restriction was presented[ The book also contains the solution for a
point force instantaneously applied on the surface of a transversely isotropic half!space[ Frequency
domain Green|s functions\ for harmonically applied time loads\ have been developed in this decade
by Rajapakse and Wang "0880\ 0882#[ In particular\ the last two articles report the solutions for
loads applied within a 1! or 2!D transversely isotropic half!space[ Three!dimensional time harmonic
Green|s functions for a transversely isotropic media as a double integral representation over a
_nite domain was given by Zhu "0881#[ A procedure to synthesize 1!D Green|s functions for
general anisotropic media using a Fourier integral transform and a modal expansion is furnished
by Liu and Lam "0885#[

A common feature of the mentioned work is the supposition that the symmetry axes for the
transversely isotropic continuum or the principal direction axes for the orthotropic medium would
be coincidental with the chosen coordinate system axes[ In solving half!space problems\ possessing
a free surface\ the usual procedure is to choose the coordinate axes parallel and perpendicular to
the free surface[ But in the general case*either 1! or 2!D*the medium principal or symmetry
axes are not necessarily parallel or perpendicular to the half!space surface[ Solutions which enforce
this hypothesis must be regarded as particular cases[

The present article reports the synthesis of Green|s and in~uence functions\ i[e[\ the solutions
for point and distributed loads applied on the surface of a half!space and in the interior of a full!
space for the case that the symmetry or principal axes of the transversely isotropic medium are
arbitrarily oriented[ A state of plane strain and harmonic time dependence is assumed throughout
the article[ Numerical results are presented for distributed loads acting on the surface of the half!
space and in the interior of the full!space\ for distinct anisotropy ratios and for various inclinations
of the continuum principal axes[ Whenever possible comparisons are made with results obtained
by other authors and methodologies[

1[ Problem formulation

1[0[ Statement of the problem

Consider an elastic orthotropic half!space and a coordinate system xyz describing the principal
directions of the continuum\ as shown in Fig[ 0[ Consider also a second coordinate system x?y?z?
obtained by rotating the _rst system about the y!axis by an angle u in such a way that the axis x?
is parallel to the half!space surface[ On the half!space surface time harmonic traction loads are
applied p"x?\ t# � p"x?# exp"ivt# with v being the circular frequency and i � z−0[

1[1[ Constitutive equations

The stressÐstrain relations for an orthotropic material considering plane strain rate are given by
"Lekhnitskii\ 0870#]
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Fig[ 0[ Load applied on the surface of a half!space[

where c00\ c02\ c22 and c33 are the continuum elastic constants[ The isotropic elastic material can be
regarded as a particular case with c00 � c22 and c33 �"c00−c02#:1[ These relations may be used to
create two dimensionless indexes n0\ n2 that express the degree of the material anisotropy "Anderson\
0850#]

n0 � c22:c00

n2 � "c00−1c33#:c02 "1#

For a linear elastic anisotropic medium the fourth!order tensor containing the material constants
cijkl does depend on the coordinate system in which the constitutive equations are written[ De_ning
the direction cosines aij between the i?!th!direction in the x?y?z?!coordinate system and the j!th!
direction in the xyz!coordinate system\ the material constants in the primed "rotated# system may
be obtained through the relation

c?ijkl � aipajqakralscpqrs "2#

For the rotated coordinate system x?y?z? the constitutive equations "0# relating stresses si?j? and
linear strains oi?j? are given by]
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An analysis of the previous equations indicate that in the rotated system there is a coupling
between shear stresses sx?z? and normal strains ox?x?\ oz?z?[
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1[2[ Governin` equations

In the absence of body forces\ the equations governing the displacements u"x\ z#\ w"x\ z# of the
orthotropic plane strain continuum in the time domain are "Payton\ 0872#]
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Assuming time harmonic behavior u"x\ z\ t# � u"x\ z# eivt\ w"x\ z\ t# � w"x\ z# eivt eqn "4# may be
recast into]
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In eqn "5# the following dimensionless elastic constants were introduced]

a � c22:c33

b � c00:c33

k � "c02¦c33#:c33 "6#

A normalized frequency parameter d has also been introduced in "5# and is de_ned by]

d1 � rv1:c33 "7#

With the aid of expressions relating to the displacements in the rotated system u?"x?\ z?#\ w?"x?\ z?#
to the displacements in the original system u"x\ z#\ w"x\ z#

u? � u cos u−w sin u

w? � u sin u¦w cos u "8#

the equations of motion "5# may be written in the primed coordinate system]
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¦
11w?

1z?1
Lwzz¦d1"−u? sin u¦w? cos u# � 9 "09#

The constants Kijk and Lijk depend on the normalized material constants a\ b\ k\ on the rotation
angle u and are given by]

Kuxx � b cos2 u¦"k¦0# sin1 u cos u

Kuxz � 1"b−0# sin u cos1 u−k"cos1 u−sin1 u# sin u

Kuzz � "b−k# sin1 u cos u¦cos2 u

Kwxx � "b−k# sin u cos1 u¦sin2 u

Kwxz � 1"b−0# sin1 u cos u¦k"cos1 u−sin1 u# cos u

Kwzz � b sin2 u¦"k¦0# sin u cos1 u "00#

and

Luxx � a sin2 u¦"k¦0# sin u cos1 u

Luxz � 1"a−0# sin1 u cos u¦k"cos1 u−sin1 u# cos u

Luzz � "a−k# sin u cos1 u¦sin2 u

Lwxx � "a−k# sin1 u cos u¦cos2 u

Lwxz � 1"a−0# sin1 u cos1 u−k"cos1 u−sin1 u# sin u

Lwzz � a cos2 u¦"k¦0# sin1 u cos1 u "01#

The Fourier integral transform relating the coordinate x? to the wave number variable l and its
inverse are de_ned\ respectively\ by "Sneddon\ 0840#]

f¹ "l\ z?# �
0

z1p g
�

−�

f "x?\ z?# e−ilx? dx?\ f "x?\ z?# �
0

z1p g
�

−�

f¹ "l\ z?# eilx? dl "02#

Introducing the dimensionless parameter z � l:d\ the fourth!order uncoupled Fourier trans!
formed version of eqns "09# in the dimensionless wave number domain are "Wylie and Barrett\
0874#]
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The constants Ti "i � 0\ [ [ [ \ 7# shown in eqns "03# are given by]
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T0 � 0
7
ð2"a¦b#¦g−3"a−b# cos 1u¦"a¦b−g# cos 3uŁ

T1 � 0¦0
1
ða¦b−"a−b# cos 1uŁ

T2 � ða−b−"a¦b−g# cos 1uŁ sin 1u

T3 � "a−b# sin 1u

T4 � 0
3
ð2"a¦b#¦g−2"a¦b−g# cos 3uŁ

T5 � 0¦0
1
ða¦b¦"a−b# cos 1uŁ

T6 � ð−a¦b−"a¦b−g# cos 1uŁ sin 1u

T7 � 0
7
ð2"a¦b#¦g¦3"a−b# cos 1u¦"a¦b−g# cos 3uŁ "04#

These terms depend on the normalized elastic constants a\ b\ the rotation angle u and on the
parameter g de_nes as]

g � 0¦ab−k1 "05#

1[3[ Solution for displacements and stresses

The general solutions for the ordinary di}erential equations "03# in the transformed domain
"l\ z?# are "Wylie and Barrett\ 0874#]

w¹ "l\ z?# � A edj0z?¦B edj1z?¦C edj2z?¦D edj3z?

u¹ "l\ z?# � Av?0 edj0z?¦Bv?1 edj1z?¦Cv?2 edj2z?¦Dv?3 edj3z? "06#

where

v?i �
z1Lwxx¦izLwxzji−Lwzzj

1
i −cos u

z1Luxx¦izLuxzji−Luzzj
1
i −sin u

\ i � 0\ [ [ [ \ 3 "07#

and ji\ i � 0\ [ [ [ \ 3 are the roots of the polynomial equation]

T0z
3−T1z

1¦0¦ij"T2z
2−T3z#−j1"T4z

1−T5#¦iT6zj
2¦T7j

3 � 9 "08#

Once the displacement solutions are known the stress components may be determined with the
help of eqn "3# yielding]

s¹ x?x? � dc33" f0A edj0z?¦f1B edj1z?¦f2C edj2z?¦f3D edj3z?#

s¹ z?z? � dc33"`0A edj0z?¦`1B edj1z?¦`2C edj2z?¦`3D edj3z?#

s¹ x?z? � dc33"h0A edj0z?¦h1B edj1z?¦h2C edj2z?¦h3D edj3z?# "19#

where

fi � izc¹?00v?i¦c¹?02ji¦c¹?04"iz¦jivi#

`i � izc¹?02v?i¦c¹?22ji¦c¹?24"iz¦jivi#
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hi � izc¹?04v?i¦c¹?24ji¦c¹?44"iz¦jivi#\ i � 0\ [ [ [ \ 3 "10#

and the normalized dimensionless material constants c¹?ij are given by]

c¹?00 �
c?00

c33

� b cos3 u¦a sin3 u¦1"k¦0# sin1 u cos1 u

c¹?02 �
c?02

c33

�"b¦a−3# sin1 u cos1 u¦"k−0#"cos3 u¦sin3 u#

c¹?04 �
c?04

c33

�"k¦0−a# sin2 u cos u−"k¦0−b# sin u cos2 u

c¹?22 �
c?22

c33

� a cos3 u¦b sin3 u¦1"k¦0# sin1 u cos1 u

c¹?24 �
c?24

c33

�"k¦0−a# sin u cos2 u−"k¦0−b# sin2 u cos u

c¹?44 �
c?44

c33

� ðb¦a−1"k−0#Ł sin1 u cos1 u¦"cos1 u−sin1 u#1 "11#

2[ Synthesis of Green|s functions and in~uence functions

In this section the general solutions presented for displacements "06# and stresses "19# will be
particularized to yield the response of a half!space and a full!space subjected to a point load and
to a uniform traction distribution[ The loads applied at an arbitrary direction will be decomposed
according to the axes x?z? and the corresponding solutions will be superposed[ The constants A\
B\ C\ D will be determined by imposing the proper boundary conditions for each stress boundary
value problem[ These constants when substituted in "06# and "19# deliver the displacement and
stress solutions in the Fourier transformed "z\ z?# domain[ The _nal solution in the original domain
"x?\ z?# is obtained by a numerical inversion of the Fourier integral transform[

2[0[ Loads on the surface of a half!space

Consider an elastic orthotropic half!space domain de_ned by]

=x?= ³ �\ 9 ¾ z? ³ � "12#

The principal "symmetry# directions of the medium are rotated with respect to the x?z?!coordinate
system by an angle u "Fig[ 0#[ On the surface of the half!space "z? � 9# time harmonic loads are
applied in the horizontal "x?# and in the vertical direction "z?#[

"0# First stress boundary value problem[ Loads in the direction x?]
For this loading case the "stress# boundary conditions are]
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sx?z?"x?\ z? � 9# � −px?"x?#

sz?z?"x?\ z? � 9# � 9 "13#

"1# Second stress boundary value problem[ Loads in the direction z?]

For this loading case the "stress# boundary conditions are]

sx?z?"x?\ z? � 9# � 9

sz?z?"x?\ z? � 9# � −pz?"x?# "14#

It can be seen that there are four unknown constants "A\ B\ C\ D# to be determined in eqns "06#
and "19# and only two boundary conditions in each case[ But it should be noticed that besides
satisfying the boundary conditions "13# or "14# the solutions must also respect the radiation
condition[ For the half!space the radiations condition implies outgoing waves with decreasing
amplitudes in the positive z?!direction[ An analysis of the structure of the eqn "08# shows that if
all Ti are real and jk is one of the roots then the negative of its conjugate −j¹k is another root[ This
implies that two of the four roots of eqn "08# do not ful_l the radiation condition and must\
therefore\ vanish "Barros\ 0886#[ These roots will be associated with the constants C and D\
consequently the radiation condition imposes that C"z# � D"z# � 9[

2[0[0[ Green|s functions
To synthesize the Green|s functions\ i[e[\ the displacement and stress solutions due to a point

load described as a Dirac|s Delta px?"x?# � pz?"x?# � dD"x?#\ its Fourier transform with respect to
the pair "x?\ l#

p¹x?"l# � p¹z?"l# �
0

z1p
"15#

must be used[ The _nal Green|s functions in the "x?\ z?# domain is obtained by a numerical inversion
of the Fourier integral transform[ The expressions for displacements and stresses are\ respectively]

Gx?x? �
0

1pc33 g
�

−�

0
`0h1−`1h0

"`1v?0 edj0z?−`0v?1 edj1z?# eidzx? dz

Gz?x? �
0

1pc33 g
�

−�

0
`0h1−`1h0

"`1 edj0z?−`0 edj1z?# eidzx? dz

Gx?z? � −
0

1pc33 g
�

−�

0
`0h1−`1h0

"h1v?0 edj0z?−h0v?1 edj1z?# eidzx? dz

Gz?z? � −
0

1pc33 g
�

−�

0
`0h1−`1h0

"h1 edj0z?−h0 edj1z?# eidzx? dz "16#

and
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sx?x?x? �
d

1p g
�

−�

0
`0h1−`1h0

" f0`1 edj0z?−f1`0 edj1z?# eidzx? dz

sx?z?x? �
d

1p g
�

−�

0
`0h1−`1h0

"h0`1 edj0z?−h1`0 edj1z?# eidzx? dz

sz?z?x? �
d

1p g
�

−�

`0`1

`0h1−`1h0

" edj0z?− edj1z?# eidzx? dz

sx?x?z? � −
d

1p g
�

−�

0
`0h1−`1h0

" f0h1 edj0z?−f1h0 edj1z?# eidzx? dz

sx?z?z? � −
d

1p g
�

−�

h0h1

`0h1−`1h0

" edj0z?− edj1z?# eidzx? dz

sz?z?z? � −
d

1p g
�

−�

0
`0h1−`1h0

"`0h1 edj0z?−`1h0 edj1z?# eidzx? dz "17#

2[0[1[ In~uence functions
There are two possible ways to obtain the so!called half!space in~uence functions\ i[e[\ the

solutions due to distributed loads applied at the half!space surface[ The _rst one is to convolute
the distributed load with the point load solution[ The second approach\ which is used in this article\
is to set directly the distributed loads px?"x?# or pz?"x?# in eqns "13# or "14#[ The Fourier transform
with respect to the pair "x?\ l# for the case of a uniform strip load of amplitude p9 and width 1a
applied at the origin of the coordinate system "x? � z? � 9# is]

p¹i"l# � p9i

1 sin"la#

z1pl
\ i � x?\ z? "18#

where p9x? and p9z? are\ respectively\ the components of p9 in the horizontal and vertical directions[
The solutions for displacements due to the uniformly distributed loads of unit intensity "p9i � 0#\
are]

u?cx? �
0

pc33d g
�

−�

0
R?c

"`1v?0 edj0z?−`0v?1 edj1z?# e−idzx? dz

w?cx? �
0

pc33d g
�

−�

0
R?c

"`1 edj0z?−`0 edj1z?# e−idzx? dz

u?cz? � −
0

pc33d g
�

−�

0
R?c

"h1v?0 edj0z?−h0v?1 edj1z?# e−idzx? dz

w?cz? � −
0

pc33d g
�

−�

0
R?c

"h1 edj0z?−h0 edj1z?# e−idzx? dz "29#

with
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R?c �
z"`0h1−`1h0#

sin"dza#
"20#

The solutions for stresses are obtained analogously "Barros\ 0886#[

2[1[ Loads applied in the interior of the full!space

To analyze displacements and stresses at the interior of a full!space due to an harmonic point
load\ the continuum is divided in two half!spaces de_ned by]

, Half!space 0] =x?= ³ �\ −� ³ z? ¾ 9[
, Half!space 1] =x?= ³ �\ 9 ¾ z? ³ �[

"0# Load in the x?!direction]

The boundary conditions for a load px? applied at the interface of the two half!spaces "z? � 9#
in the x?!direction are]

u?"0# "x?\ 9#−u?"1# "x?\ 9# � 9

w?"0# "x?\ 9#−w?"1# "x?\ 9# � 9

s"0#
x?z?"x?\ 9#−s"1#

x?z?"x\ 9# � px?"x?#

s"0#
z?z?"x\ 9#−s"1#

z?z?"x?\ 9# � 9 "21#

"1# Load in the z?!direction]

Analogously the boundary conditions for a load pz? applied at the interface of the two half!
spaces "z? � 9# in the z?!direction are]

u?"0# "x?\ 9#−u?"1# "x?\ 9# � 9

w?"0# "x?\ 9#−w?"1# "x?\ 9# � 9

s"0#
x?z?"x?\ 9#−s"1#

x?z?"x\ 9# � 9

s"0#
z?z?"x\ 9#−s"1#

z?z?"x?\ 9# � pz?"x?# "22#

2[1[0[ Green|s functions
There are four unknown constants for each half!space A"i# � B"i# � C"i# � D"i#\ i � 0\ 1 and only

four boundary conditions for each stress boundary value problem "21# and "22#[ Therefore\ four
constants must vanish due to the radiation condition[ These are assumed to be
A"0# � B"0# � C"1# � D"1# � 9[ The resulting displacements and stresses are\ respectively]

0[ Half!space 0 "z? ¾ 9#]

Gx?x? �
0

z1pc33
g

�

−�

p¹x?

H
"Cx?v?2 edj2z?¦Dx?v?3 edj3z?# eidzx? dz
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Gz?x? �
0

z1pc33
g

�

−�

p¹x?

H
"Cx? edj2z?¦Dx? edj3z?# eidzx? dz

Gx?z? �
0

z1pc33
g

�

−�

p¹z?

H
"Cz?v?2 edj2z?¦Dz?v?3 edj3z?# eidzx? dz

Gz?z? �
0

z1pc33
g

�

−�

p¹z?

H
"Cz? edj2z?¦Dz? edj3z?# eidzx? dz "23#

and

sx?x?x? �
d

z1p g
�

−�

p¹x?

H
"Cx?f2 edj2z?¦Dx?f3 edj3z?# eidzx? dz

sx?z?x? �
d

z1p g
�

−�

p¹x?

H
"Cx?h2 edj2z?¦Dx?h3 edj3z?# eidzx? dz

sz?z?x? �
d

z1p g
�

−�

p¹x?

H
"Cx?`2 edj2z?¦Dx?`3 edj3z?# eidzx? dz

sx?x?z? �
d

z1p g
�

−�

p¹z?

H
"Cz?f2 edj2z?¦Dz?f3 edj3z?# eidzx? dz

sx?z?z? �
d

z1p g
�

−�

p¹z?

H
"Cz?h2 edj2z?¦Dz?h3 edj3z?# eidzx? dz

sz?z?z? �
d

z1p g
�

−�

p¹z?

H
"Cz?`2 edj2z?¦Dz?`3 edj3z?# eidzx? dz "24#

1[ Half!space 1 "z? − 9#]

Gx?x? �
0

z1pc33
g

�

−�

p¹x?

H
"Ax?v?0 edj0z?¦Bx?v?1 edj1z?# eidzx? dz

Gz?x? �
0

z1pc33
g

�

−�

p¹x?

H
"Ax? edj0z?¦Bx? edj1z?# eidzx? dz

Gx?z? �
0

z1pc33
g

�

−�

p¹z?

H
"Az?v?0 edj0z?¦Bz?v?1 edj1z?# eidzx? dz

Gz?z? �
0

z1pc33
g

�

−�

p¹z?

H
"Az? edj0z?¦Bz? edj1z?# eidzx? dz "25#

and
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sx?x?x? �
d

z1p g
�

−�

p¹x?

H
"Ax?f0 edj0z?¦Bx?f1 edj1z?# eidzx? dz

sx?z?x? �
d

z1p g
�

−�

p¹x?

H
"Ax?h0 edj0z?¦Bx?h1 edj1z?# eidzx? dz

sz?z?x? �
d

z1p g
�

−�

p¹x?

H
"Ax?`0 edj0z?¦Bx?`1 edj1z?# eidzx? dz

sx?x?z? �
d

z1p g
�

−�

p¹z?

H
"Az?f0 edj0z?¦Bz?f1 edj1z?# eidzx? dz

sx?z?z? �
d

z1p g
�

−�

p¹z?

H
"Az?h0 edj0z?¦Bz?h1 edj1z?# eidzx? dz

sz?z?z? �
d

z1p g
�

−�

p¹z?

H
"Az?`0 edj0z?¦Bz?`1 edj1z?# eidzx? dz "26#

with

Ax? � −`1v?2−v?1`3¦`1v?3¦v?1`2−`2v?3¦v?2`3

Bx? � −v?2`3−v?0`2¦v?0`3¦`2v?3¦`0v?2−`0v?3

Cx? � `1v?3−`1v?0¦v?0`3−v?1`3¦v?1`0−`0v?3

Dx? � `1v?0−`1v?2¦`0v?2−v?0`2¦v?1`2−v?1`0 "27#

Az? � h2v?3−v?2h3−h1v?3¦v?1h3¦v?2h1−h2v?1

Bz? � h0v?3−v?2h0−v?0h3−h2v?3¦v?2h3¦h2v?0

Cz? � −v?0h3¦h1v?0−v?1h0¦h0v?3−h1v?3¦v?1h3

Dz? � v?2h1¦v?1h0−h1v?0¦h2v?0−h2v?1−v?2h0 "28#

and

H � −`1v?2h3¦v?2h1`3−v?0`2h3¦`1v?0h3¦v?2`1h0¦v?1h0`3¦v?0`2h1

¦`1h2v?3−h2`1v?0−`1h0v?3−h1v?0`3¦h2v?0`3−h2v?1`3−h0`2v?1

¦h0`2v?3−h1`2v?3−v?2h0`3¦v?1`2h3−`0v?2h1−`0v?1h3¦`0h2v?1

−`0h2v?3¦`0h1v?3¦`0v?2h3 "39#

For a unit concentrated line load applied in the full!space "Green|s functions# p¹x?"l# and p¹z?"l#
are given by eqn "15# and for a uniform strip load by eqn "18#[

It can be shown that the Green|s functions present displacement continuity at the interface
z? � 9 and a stress discontinuity at the origin x? � 9\ z? � 9 where the point load is applied[

There is an alternative approach to obtain Green|s functions for a point load applied inside an
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anisotropic full!space with respect to arbitrarily oriented axes "x?\ z?#[ It is possible to synthesize
the Green|s functions in the rotated coordinate system by merely making a coordinate trans!
formation about u on the second! and third!order tensors furnished by Rajapakse and Wang
"0880# which represent\ respectively\ displacements and traction kernels in the "x\ z# axes of an
orthotropic continuum[ The expressions for the rotated displacements and stresses are]

Gi?j? � aikaklGkl

si?j?k? � ailajmakmslmn "30#

An analysis of eqns "30# reveals that due to the fact that in the interior of a full!space Gzx � Gxz

"Barros\ 0886# then in the rotated system Gz?x? � Gx?z?[ Furthermore\ all components of Gi?j? are
symmetric with respect to the point the load is applied Gi?j?"x?\ z?# � Gi?j?"−x?\ −z?# and all com!
ponents of the stress functions are antisymmetric with respect to the point the load is applied
si?j?k?"x?\ z?# � −si?j?k?"−x?\ −z?#[ It should be stressed that the relations "30# are only valid for a
point load applied in the full!space and not for the half!space[

In~uence functions for loads applied inside the half!space may also be determined following the
methodology outlined in Rajapakse and Wang "0880#[

3[ Remarks on the numerical realization of the integrals

The solutions presented in the previous sections are in the form of improper integrals that must
be evaluated numerically[ Two main di.culties are present in the evaluation of these integrals[
The _rst problem is related to the singularities that occur in the integrand and the second is related
to the oscillatory integrands and the unbounded character of the integrals[

One situation giving rise to a singular integrand occurs when the values of v?i become singular
due to the vanishing denominator in eqn "07#\ z1Luxx¦izLuxzji−Luzzj

1
i −sin u � 9[ This is only

possible when u � 9\ u � p:1 or when the material is isotropic[ For the _rst two cases the singu!
larities occur for the values z � zp and z � zs given by "Rajapakse and Wang\ 0880#]

zp �

F

G

j

J

G

f

2
0

zb
if u � 9

2
0

za
if u � p:1

zs � 20 "31#

For an isotropic material a � b �"l¹¦1m¹ #\ where l¹ and m¹ are the Lame�|s constants[ In this case
the value of u is irrelevant and the singularities are always present[

Another singularity occurs when the load is applied at the surface of the half!space and sim!
ultaneously u � 9 or u � p:1\ or when the material is isotropic[ This singularity occurs always
when `0h1−`1h0 � 9[ For the case u � 9 the value z � zR corresponds to the roots of the equation]

ð1"0−k#z1
R−gz1

R¦aŁ"0−z1
R#−aj0j1 � 9 "32#

For the case u � p:1 the value of a in eqn "32# should be substituted by b[ For an isotropic
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material zR corresponds to the Rayleigh pole[ Thus\ this singularity is related to Rayleigh waves
propagating in the vicinity of the half!space surface[ When 9 ³ u ³ p:1 there are no Rayleigh
weaves propagating in an orthotropic material "Synge\ 0845#[ So\ for these values of u\ there are
no singularities associated with Rayleigh waves in an orthotropic or transversely isotropic material[

To avoid the numerical integration over the singularities associated with zs\ zp\ zR\ material
damping has been added to the elastic constants\ which become complex and cause the singularities
to be displaced from the real integration axes[ In the present work a small amount of material
damping v � 9[90 has been added to the elastic constants c00\ c22\ c02[

It should be noticed that for orthotropic materials when the principal axes are inclined "u � 9
and u � p:1# there are no singularities in the real integration axis associated with z and therefore\
no addition of material damping is necessary[ But to keep the integration procedure homogeneous
throughout this article the material damping was added for all the cases[

The inclusion of material damping makes complex the constants Ti of eqn "08#[ Nevertheless\ it
has been observed in the numerical simulations that two roots ji still present positive real parts
and two possess negative real parts[

Although the addition of material damping removes the singularity from the real axis it is still
necessary to treat carefully the integrands in the vicinity of these points because they present very
high gradients and a resonance!like behavior[ The integration intervals in which these quasi!
singular points appear were separated and the numerical integration performed by the routines of
the package QUADPACK "Piessens et al[\ 0872#[ These routines possess an adaptive procedure
for the determination of the integration step increment coupled with the o!method of series
extrapolation "Wynn\ 0845# to integrate functions with high gradients[ The same series extra!
polation method is applied to perform the integration when one of the limits is unbounded[ The
oscillatory character of the integrand was also treated by the QUADPACK using the ClenshawÐ
Curtis "Clenshaw and Curtis\ 0859# technique which makes the integrals almost insensitive to the
value of the product dx "Dravinski and Mossessian\ 0877#[

4[ Numerical results

In this section the numerical results obtained for in~uence functions applied in the full!space
and on the half!space surface are reported[ The analysis was conducted for three distinct materials
characterized by the elastic constants c00:c33\ the anisotropy indexes n0 and n2 and the material
damping coe.cient v\ as shown in Table 0[ Material 0 is isotropic whereas materials 1 and 2 are

Table 0
Material constants

Material c00:c33 n0 n2 v

0 5 0 0 9[90
1 5 0[4 9[56 9[90
2 5 9[56 0[4 9[90
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isotropic[ The amplitude of the uniform traction strip load of width 1a and centered at the origin
of the coordinate system x?z? is p9[ The displacements and stresses are normalized\ respectively\ by
u¹? � u?c33:"ap9# and s¹ � s:p9[ All results are for one value of the dimensionless frequency
a9 � avzr:c33 � 0[

4[0[ Full!space

Figure 1 shows the displacement component u¹?x? along the axis z? � 9 for materials 0\ 1 and 2
and for u � 9[ It should be noticed that u¹?z? � w¹ ?x? � 9 along the axis z? � 9 when u � 9 "Rajapakse
and Wang\ 0880#[ For the isotropic case\ the results of this implementation are compared with the
direct integration of the elastic fundamental solution "Manolis and Beskos\ 0877# shown as the
discrete squares in Fig[ 1[ The agreement is very good and should be seen as a validation of the
present implementation for the isotropic case[

Figures 2 and 3 show the in~uence of the rotation angle u on the real and imaginary parts of
the normalized displacement components along the axis z? � 9 for materials 1 and 2\ respectively[
It should be noticed that for u � 9\ u¹?z? � w¹ ?x? � 9[ Figure 4 shows the stress component s¹ z?x?z? for
material 1 and u � p:5[ The discontinuities on the real part of the stress distribution\ which are in
phase with the excitation\ are well depicted in the _gures[ Due to the symmetry of the problem the
discontinuities are equally distributed on both sides of the z?!axis[ It should be noticed that the
depicted discontinuity was obtained numerically[ It reproduces very well the given stress boundary
condition and can be regarded as a test for the accuracy of the employed numerical integration
scheme[

Fig[ 1[ Normalized displacements along z? � 9 due to a uniform strip load applied in the full!space in the x?!direction
"u � 9#[
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Fig[ 2[ Normalized displacements along z? � 9 due to a uniform strip load applied in the full!space "material 1#[

Fig[ 3[ Normalized displacements along z? � 9 due to a uniform strip load applied in the full!space "material 2#[

4[1[ Half!space

Figure 5 shows the displacement components due to a uniform load applied at the surface of a
transversely isotropic half!space for materials 0\ 1 and 2\ considering u � 9[ The discrete points
shown at these _gures are the results synthesized according to the methodology described by
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Fig[ 4[ Normalized stress component s¹ x?z?x? in the full!space due to a uniform strip load applied along z? � 9 "material 1\
u � p:5#[

Rajapakse and Wang "0880#[ It can be seen that the results agree very well\ except for the
component u¹?x? of the material 1[ The discrepancies may be due to di}erences in the numerical
integration procedure[ This must be further investigated[ But the good agreement in all other
components does contribute to validate the present implementation[

The in~uence of the rotation angle u on the displacement in~uence functions at the half!space
surface may be seen in Fig[ 6 for material 1 and in Fig[ 7 for material 2[ The rotation angles
considered are u � 9\ p:01\ p:5\ p:3[ An analysis of the results reveals that the inclination u � 9
destroys\ as expected\ the symmetric or anti!symmetric behavior of the components u¹?x? and w¹ ?x?\
respectively[ It should also be noticed that w¹ ?x? � u¹?z?[

The component s¹ x?z?x? of the stress tensor in the half!space due to a uniform traction distribution
at the surface may be seen in Fig[ 8[ The results are for material 1 with u � p:5[ It can be seen that
the numerical procedure reproduces very precisely the prescribed traction boundary condition at
the half!space surface[ The stress distribution for u � 9 is not symmetric with respect to the z?!
axis[

5[ Concluding remarks

The article reports a methodology to synthesize the response of plane strain transversely isotropic
half!spaces and full!spaces with arbitrarily oriented symmetry axes and subjected to loads and to
distributed loads[ Numerical results for uniform strip loads\ i[e[\ in~uence functions\ are reported
for the half!space surface and for the full!space[ The numerical integration strategy is addressed[
Validation of the implementation was attempted by comparisons with results reported in the
literature for the isotropic continuum and for the transversely isotropic medium with u � 9[ The
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Fig[ 5[ Normalized displacements along z? � 9 due to a uniform strip load applied on the surface of an elastic half!space
"u � 9#[

numerical results include two distinct anisotropic states and displays the in~uence of the rotation
angle u on the continuum displacement and stress responses[ The in~uence functions possess
continuous displacements and some discontinuous stress distributions that are accurately repro!
duced in the present implementation[ The methodology presented represents a versatile tool to
investigate the in~uence of the anisotropy ratios "n0\ n2# and the rotation angle u as well as the role
of the material damping v on the continuum response[ It should be noticed that the extension of
the present methodology to analyze the more general case of plane anisotropy "Lekhnitskii\ 0870#
is easily accomplished once the structure of the constitutive equations "3# described in the present
article and the one of the plane anisotropy are the same[
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Fig[ 6[ Normalized displacements along z? � 9 due to a uniform strip load applied in the x?!direction at the surface of
an elastic half!space "material 1#[
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Fig[ 7[ Normalized displacements along z? � 9 due to a uniform strip load applied in the x?!direction at the surface of
an elastic half!space "material 2#[
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Fig[ 8[ Normalized stress component s¹ x?z?x? within the half!space due to a uniform strip load applied at the surface
"material 1\ u � p:5#[
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